Dynamic cell behavior on shape memory polymer substrates.
نویسندگان
چکیده
Cell culture substrates of defined topography have emerged as powerful tools with which to investigate cell mechanobiology, but current technologies only allow passive control of substrate properties. Here we present a thermo-responsive cell culture system that uses shape memory polymer (SMP) substrates that are programmed to change surface topography during cell culture. Our hypothesis was that a shape-memory-activated change in substrate topography could be used to control cell behavior. To test this hypothesis, we embossed an initially flat SMP substrate to produce a temporary topography of parallel micron-scale grooves. After plating cells on the substrate, we triggered shape memory activation using a change in temperature tailored to be compatible with mammalian cell culture, thereby causing topographic transformation back to the original flat surface. We found that the programmed erasure of substrate topography caused a decrease in cell alignment as evidenced by an increase in angular dispersion with corresponding remodeling of the actin cytoskeleton. Cell viability remained greater than 95% before and after topography change and temperature increase. These results demonstrate control of cell behavior through shape-memory-activated topographic changes and introduce the use of active cell culture SMP substrates for investigation of mechanotransduction, cell biomechanical function, and cell soft-matter physics.
منابع مشابه
An experimental investigation on the energy storage in a shape-memory-polymer system
In this paper, the effect of thermomechanical loading on the behavior of deflection-based harvested energies from a shape memory polymer system is experimentally investigated. Samples are created with honeycomb cells from poly-lactic acid using additive manufacturing techniques. The shape memory effect in shape recovery and force recovery paths are studied under thermomechanical tests in bendin...
متن کاملAdaptive Tunable Vibration Absorber using Shape Memory Alloy
This study presents a new approach to control the nonlinear dynamics of an adaptive absorber using shape memory alloy (SMA) element. Shape memory alloys are classified as smart materials that can remember their original shape after deformation. Stress and temperature-induced phase transformations are two typical behaviors of shape memory alloys. Changing the stiffness associated with phase tran...
متن کاملEffects of the asymmetric behavior of the shape memory alloy on nonlinear dynamic responses of thick sandwich plates with embedded SMA wires
In the present article, the dynamic behavior of sandwich plates with embedded shape memory alloy (SMA) wires is evaluated for two cases wherein (i) the stress-strain curve of the superelastic behavior of the SMA wires is symmetric and (ii) the mentioned curve is non-symmetric. A modified version of Brinson’s constitutive model is proposed and used. The high non-linearity in the behavior stems f...
متن کاملNonlinear Thermo-Mechanical Behaviour Analysis of Activated Composites With Shape Memory Alloy Fibres
General thermo-mechanical behavior of composites reinforced by shape memory alloy fibers is predicted using a three-dimensional analytical micromechanical method to consider the effect of fibers activation. Composite due to the micromechanical method can be exposed to general normal and shear mechanical and thermal loading which cause to activate the shape memory alloy fibers within polymeric m...
متن کاملTop-gate Organic Field-effect Transistors Fabricated on Shape- memory Polymer Substrates
We demonstrate top-gate organic field-effect transistors (OFETs) with a bilayer gate dielectric and doped contacts fabricated on shape-memory polymer (SMP) substrates. SMPs exhibit large variations in Young’s modulus dependent on temperature and have the ability to fix two or more geometric configurations when a proper stimulus is applied. These unique properties make SMPs desirable for three-d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 32 9 شماره
صفحات -
تاریخ انتشار 2011